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Abstract

Thin-film shape memory alloys (SMAs) have become excellent candidates for mi-
croactuator fabrication in MEMS due to their capability to achieve very high work
densities, produce large deformations, and generate high stresses. In general, the
material behavior of SMAs is nonlinear and hysteretic. To achieve the full potential
of SMA actuators, it is necessary to develop models that characterize the nonlinear-
ities and hysteresis inherent to the constituent materials. We develop a model that
quantifies the nonlinearities and hysteresis inherent to SMAs. The model is based
on free energy principles combined with stochastic homogenization techniques. The
fully thermomechanical model predicts rate-dependent, polycrystalline SMA behav-
ior, and it accommodates heat transfer issues pertinent to thin-film SMAs. We il-
lustrate aspects of the model through comparison with thin-film SMA superelastic
and shape memory effect hysteresis data.

Key words: Shape memory alloy model; thin film; polycrystals.

1 Introduction

Shape memory alloys (SMAs) are metals that recover from up to 10% defor-
mation via stress and temperature-induced phase transformations. SMAs un-
dergo martensitic transformations, which are displacive transformations dom-
inated by shear distortions of the crystal lattice. Transformations occur be-
tween solid phases, termed themartensite and austenite phases. Distinguished
by their crystallographic structures, martensite and austenite can have drasti-
cally different mechanical, thermal, electrical, optical, and acoustical material
properties [82]. In general, martensite is the material phase that is stable at
low temperatures relative to austenite, which is stable at high temperatures.
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The martensitic transformations between martensite and austenite enable
SMAs to recover or “remember” shape by two different mechanisms. In both
cases, austenite corresponds to the remembered shape. First, superelasticity
describes shape memory via stress-induced phase transformations. At a fixed
temperature where stress-free austenite is a stable phase, austenite transforms
into martensite due to an applied load. Upon removing the load, the material
reverts to austenite and the original shape is recovered. Secondly, the shape
memory effect (SME) describes shape memory via temperature-induced trans-
formations. In this case, deformed martensite transforms into austenite due
to heating and shape memory is observed. Upon subsequent cooling, the SMA
transforms back to martensite. If the SMA is stress-free upon cooling, then it
will retain its recovered shape in the martensite phase by means of a process
called self-accommodation. If the SMA is subjected to a load while cooling,
then it will deform again as it reverts to martensite.

As illustrated in Figure 1, hysteresis is associated with both superelasticity
and the shape memory effect. For superelasticity, it is observed that austenite
deforms elastically until a loading transformation is reached. Further loading
induces a transformation to the martensite phase with a large transformation
strain. Upon unloading martensite, the transformation strain is recovered as
the SMA returns to austenite. For the shape memory effect, hysteresis is often
observed when an SMA is subjected to a fixed load. In this case, an austenitic
SMA will transform to martensite when cooled, exhibiting a large transfor-
mation strain in the process. When reheated to austenite, the transformation
strain is recovered. The general stress-temperature-strain behavior of SMAs
is thermomechanically coupled. We refer the reader to [82] for details of shape
memory mechanisms and other SMA material properties.

At the heart of the first-order martensitic phase transitions in SMAs are dis-
placive phase transitions at the crystal lattice. NiTi and many Cu-based SMAs
admit a cubic crystal structure in the high-temperature austenite phase. Upon
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Fig. 1. Hysteresis associated with superelasticity (fixed temperature) and the shape
memory effect (fixed load).
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transformation to martensite, the high-symmetry structure decomposes into
a lower-symmetry, martensite structure. The symmetry reduction allows for
several differently-oriented martensite single crystals to form from a single
austenite crystal via predominantly shear lattice distortions. We refer the
reader to [12,34,82] for greater detail on SMA crystallography.

We note that with particular material preparation, the transformation from
austenite to martensite (cooling or stress-induced) involves an intermediate
rhombohedral phase with a trigonal crystal lattice. The shape change associ-
ated with the intermediate transformation is on the order of 0.1% and its ther-
mal hysteresis is an order smaller than that of the direct austenite-martensite
transformation. The rhombohedral phase can usually be eliminated with heat
treatment [82]. For our one-dimensional model, we focus on direct transforma-
tions between austenite and martensite and we consider a simplified case with
only two orientations of martensite, denoted M+ and M−, that are sheared
versions of austenite (A).

Since their discovery in 1932, SMAs have been fabricated mostly in the form
of wires, tubes, and bars. However, in the last 10 years, shape memory alloys
have been fabricated as thin foils and films. To make the batch production
of thin-film SMA devices viable, research is ongoing to develop thin-film
SMA fabrication techniques that are compatible with conventional integrated
circuit processing and bulk micromachining. The predominant fabrication
method for SMA films has been sputter deposition (RF and DC magnetron)
[38,29,48,75,78,82]. SMA films differ from bulk SMAs in several aspects, in-
cluding their structure (e.g., very fine-grained) and their shape memory be-
havior. Moreover, an increased sensitivity of material properties to chemical
composition, impurities, and processing conditions is observed in SMA films
[28,48,54,109,117]. In the following section, we discuss applications of SMAs
that have resulted from advances in thin-film processing.

1.1 Applications

The hysteresis exhibited by shape memory alloys enables the materials to
achieve very high work densities, produce large recoverable deformations, and
generate high stresses, which are ideal for a number of high performance ap-
plications. For example, SMA wires have been considered for medical and
potential aeronautic and aerospace applications that require large deforma-
tions and large forces [22,52]. Additionally, SMAs exhibit a damping capacity
much larger than that of a number of conventional materials. In this case,
SMA hysteresis is being utilized to design earthquake and hurricane-resistant
civil structures [21,92,105,113]. Most of these macroscopic applications are
limited in bandwidth because of heating and cooling restrictions inherent to
bulk SMAs.
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Recent development of SMA films has made SMAs excellent candidates for
microactuators. Their work output density is on the order of 10MJm−3, which
exceeds that of other microactuator materials [78,116]. Additionally, they can
yield large strokes and forces on the order of 1% and 100 mN, respectively.
Moreover, thin-film SMAs heat on the order of milliseconds by low voltage
Joule heating (∼5 V), and, unlike macroscopic SMAs (wires, tubes, bars, etc.),
their small thermal mass and large surface-to-volume ratio allow fast cooling
rates, potentially permitting switching frequencies on the order of 100 Hz
[27,73,87,97].

Microscale in-plane applications include microgrippers with large grip sizes
and strengths [9,10,44,59,70,90,110,121], high current carrying, latching mi-
crorelays [32], microswitches [10], microshutters [60], and loop actuators [30].
Several thin-film SMA microcantilevers have been fabricated for applications
that require out-of-plane actuation [29,49,56,65,66,79,118]. In particular, NiTi
microcantilevers are used in [40] for far infrared imaging at ambient tempera-
tures where SMA cantilevers deflect in response to small temperature changes
caused by radiation absorption.

Thin-film SMA strips have been investigated for self-propelled, low power mi-
crorobots [114], and to generate traveling waves for turbulent drag reduction
[115]. Moreover, thin-film SMAs in the form of membranes have been consid-
ered for micropumps [11,74,119] and microvalves [57,58] that generate large
pressures and pumping rates. In [98], a thin-film SMA membrane is used in a
prototype compact hybrid actuator to reach drive frequencies of 100 Hz and
output forces exceeding 100 N. In [104], the change in optical reflectivity from
austenite to martensite is utilized to fabricate a membrane-based light-valve.

Many of these applications rely on the one-way memory effect and require
an extrinsic biasing mechanism for full actuation. However, microdevices us-
ing functionally graded films [37,38] or bimorph principles [29,43,49,66,79,102]
can achieve two-way, out-of-plane displacements with smaller footprints than
conventional micromechanisms. Finally, superelastic NiTi thin films are be-
ing considered for high-strength surface coatings in MEMS devices, and they
have potential for microscale mechanical energy storage devices, and vibration
dampeners in microelectronics packaging [39,42]. High damping has also been
observed in multilayer SMA film microcantilevers [20]. We refer the reader to
[18,48,63] for reviews of other SMA microscale applications.
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1.2 Modeling Approaches

To achieve the full potential of SMA actuators, it is necessary to develop mod-
els that characterize the nonlinearities and hysteresis inherent in the materials.
Most models of hysteresis in SMAs are constitutive, aiming to predict the mea-
sured relationships among stress, temperature, and strain. We refer the reader
to reviews and comparisons of a number of models in [15,17,25,35,88] and par-
ticularly in [93], where computational considerations are addressed. SMA hys-
teresis models can be roughly categorized as being microscopic, mesoscopic,
or macroscopic, depending on which material level they base their method of
predicting constitutive behavior.

Microscopic and mesoscopic models, such as [6,7,19,120], employ both phe-
nomenological and energy principles to model atomic and lattice-level behavior
of ferroelastic compounds. Understanding material dynamics at these funda-
mental levels can support efforts to design compounds with desired material
properties. For example, Castán, et. al. [19] quantify interatomic energies and
conduct lattice model simulations for some ferroelastic alloys. Given atomic
composition and thermal treatment information, they are able to compute
macroscopic elastic constants and martensite transition temperatures. Mod-
els of this nature are typically used for off-line simulations, and their solution
requires techniques such as Monte Carlo methods that have a high computa-
tional cost.

Another class of mesoscopic models, traditionally referred to as micromechan-
ical models, focuses specifically on developing local grain-level constitutive
theories [24,34,84]. While operating at a fundamental level similar to that of
the previously mentioned theory, these models provide a more direct means of
predicting observed constitutive behavior. Deriving macroscopic constitutive
behavior from these theories for design applications necessitates additional
procedures, such as the self-consistent averaging approaches in [34,84]. Scal-
ing these mesoscopic theories to macroscopic levels usually is computationally
intensive; therefore, for macroscopic predictions, these models are generally
not intended for on-line engineering nor control applications. Recently, mi-
cromechanical models have been developed specifically for thin-film SMAs
[8,13,53,99].

Macroscopic models commonly employ phenomenological or energy principles.
As opposed to most microscopic and mesoscopic models, macroscopic models
are formulated mainly for implementation into engineering designs and on-line
control. A series of internal-state models rooted in the uniaxial Tanaka ap-
proach [15,88] use an empirical or thermodynamics-based evolution law for the
martensite volume fraction, which in-turn is used to predict stress or strain
using a phenomenological constitutive relation. Similarly, Papenfuß and Se-
elecke [83,94] predict thermomechanical behavior by modeling the evolution
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of martensite variant fractions, but by using a statistical thermodynamics
description of thermally activated processes. Lexcellent, et.al. [31,71] have
developed similar models for thin-film SMAs.

Another macroscopic approach, based on phenomenological principles, is the
Preisach model [108]. Originally developed for ferromagnetic hysteresis,
Preisach models have been generalized and adapted to other physical sys-
tems, including SMAs [33,45,46,64,67,77,112]. In general, Preisach models
are purely empirical and their implementation reduces to the identification of
many mathematical parameters via numerous hysteresis experiments that may
be unavailable in practice. To make Preisach models more tractable for SMA
applications, there have been attempts to replace or identify purely mathemat-
ical constructs with known or approximated physics. For example, Huo [46]
incorporates Falk’s [23] macroscopic Landau-Ginzburg potential to account
for first-order martensitic phase transformations. In addition, Lagoudas and
Bhattacharyya [67] associate Preisach weighting functions with distributions
of single-crystal orientations in polycrystalline SMAs.

The model we present focuses on predicting macroscopic constitutive behavior
by starting with mesoscopic energy relations. The model quantifies constitu-
tive nonlinearities and hysteresis inherent to SMAs in formulations suitable
for subsequent model-based control design. We employ as a starting point
the Müller-Achenbach-Seelecke theory [3,83,94], based on the quantification
of thermally activated processes for bulk SMAs. In the first step, we establish
local free energies for single-crystal, homogeneous SMAs and we employ transi-
tion state theory to derive rate laws for phase fraction evolution. In addition,
we formulate a balance of internal energy that quantifies a rate-dependent
release of latent heats and heat transfer to and from the environment. In
the second step of the development, we extend the single-crystal model to ac-
commodate inhomogeneous and polycrystalline materials by considering ma-
terial parameters to be manifestations of underlying stochastic distributions.
The result is a rate-dependent, thermomechanical model that predicts relative
elongation due to applied stress and temperature. The model accommodates
SMA behavior pertinent to actuator design, such as superelasticity and the
shape memory effect. Moreover, the model admits a low-order formulation
suitable for subsequent control design, and most of the model parameters are
identifiable directly from standard measurements. In Section 2, we develop
the uniform lattice model, and we extend the model to accommodate inho-
mogeneous and polycrystalline SMAs in Section 3. In Section 4, we address
numerical implementation issues and analyze model simulations. Finally, in
Section 5 we discuss the identification of material parameters and in Section 6
we validate aspects of the model through comparison with hysteresis data from
and SMA foil and thin films.
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2 Uniform Lattice Model

Motivated by the theory in [83,94], we treat a lattice layer as the fundamen-
tal element of our model. Following our simplified uniaxial description, we
assume an SMA lattice layer admits either the austenite phase or one of two
martensite variants. We denote the volume fraction of austenite and marten-
site layers in an SMA as xα (t), where the subscript α denotes austenite (A)
and martensite (one of two opposing variantsM±). The phase fractions satisfy
the conservation law X

α

xα (t) = 1 (1)

over all time t > 0. Throughout, we assume the martensite variants share
the same thermomechanical properties, which generally differ from those of
austenite. For specific heat capacities, we denote the volumetric quantity
c = ρcV for mass density ρ and specific heat cV measured at constant volume.
Once we construct a thermoelastic free energy relation for SMAs, we will model
the evolution of the phase fractions as a function of stress and temperature.

2.1 Energy Relations

In this section, we construct a phenomenological description of an SMA’s local
free energy. First we construct the local Helmholtz and Gibbs free energies
from elastic and thermodynamics relations based on the theory in [1,94]. Then,
we describe equilibrium stress-strain equations and transformation behavior
based on our energy expressions.

2.1.1 Helmholtz Free Energy

For a scalar strain ε, we consider the potential

φ± (ε, T ) =
EM

2
(ε∓ εT )

2 + βM (T ) , (2)

for the martensite variants, whereas for austenite we consider

φA (ε, T ) =
EA

2
ε2 + βA (T ) . (3)

The strain-dependent portions of the potentials represent the elastic energies,
where the constants EM and EA are linear elastic moduli for martensite and
austenite, respectively. The quantity εT corresponds to the stress-free equi-
librium strain of martensite, while ε = 0 (no deformation) is the equilibrium
strain for austenite. The parameter-dependent family of functions βα (T ) rep-
resent the chemical (non-elastic) free energies, which we define in Section 2.1.3.
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While others, such as [5,31,53,68,71], have formulated the specific Helmholtz
free energies as a combination or mixture of (2) and (3), we construct a single,
C1-continuous Helmholtz free energy by joining the individual potentials. We
employ the Helmholtz relation

ψ (ε, T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EM
2
(ε+ εT )

2 ε ≤ −γM (T )

−E0(T )
2
(ε+ ε0 (T ))

2 + ψ0 (T ) −γM (T ) < ε < −γA (T )
EA
2
ε2 +∆β (T ) |ε| ≤ γA (T )

−E0(T )
2
(ε− ε0 (T ))

2 + ψ0 (T ) γA (T ) < ε < γM (T )

EM
2
(ε− εT )

2 ε ≥ γM (T )

, (4)

where γM (T ) and γA (T ) are temperature-dependent nodes connecting the
concave parabolae, which represent unstable states, to the convex potentials,
which represent stable martensite and austenite states. In (4), we have ne-
glected elastic energies due to thermal expansion effects, which we introduce
in Section 2.4. Without loss of generality, we have shifted the martensite
minima to zero so that the austenite minimum has the height

∆β (T ) = βA (T )− βM (T ) . (5)

When∆β (T ) < 0, the austenite equilibrium has a lower energy, so transforma-
tions from martensite to austenite are more likely to occur. The temperature-
dependent coefficients E0, ε0, and ψ0 define the concave parabolae whose max-
ima are ψ0 at ε = ±ε0. Enforcing continuity at the nodes yields

−EAγA (T ) γM (T )−EM (γM (T )− εT ) (εT − γA (T )) = 2∆β (T ) , (6)

which relates the temperature-dependence of the nodes to the chemical free
energy. In the same manner, we obtain

E0 (T ) =
EAγA (T )− EM (γM (T )− εT )

γM (T )− γA (T )
(7)

ε0 (T ) = γA (T )
EAγM (T )− EM (γM (T )− εT )

EAγA (T )− EM (γM (T )− εT )
(8)

ψ0 (T ) = −1
2

EM (γM (T )− εT ) [EAγA (T ) εT + 2∆β (T )]

EAγA (T )−EM (γM (T )− εT )
. (9)

Note that the local three-well energy formulation (4) is only valid at tempera-
tures for which austenite is stable. We define a local critical temperature TM
below which the austenite phase is unstable upon cooling for a single lattice
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Fig. 2. Piecewise quadratic Helmholtz free energy density (4) and (10) for increasing
temperatures. Dashed segments represent the concave, unstable states and ∆β (T )
is the height of the austenite minimum.

layer. Then, (4) holds only for T ≥ TM and the austenite nodes γA (T ) con-
verge to zero at T = TM . In practice, superelastic and SME behavior occur at
temperatures sufficiently greater than TM ; however quasiplastic and low-stress
thermoelastic applications achieve complete actuation at lower temperatures.
For T ≤ TM , we model the Helmholtz free energy as the double-well potential

ψ (ε, T ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
EM
2
(ε+ εT )

2 ε ≤ −γM (T )
−∆β(T )
γM (T )εT

ε2 +∆β (T ) |ε| < γM (T )

EM
2
(ε− εT )

2 ε ≥ γM (T )

(10)

with

EMεT (εT − γM (T )) = 2∆β (T ) . (11)

Since γM (T ) ≥ 0 by construction, (11) provides the restriction ∆β (T ) ≤
EMε2T/2. This restriction is imposed by our choice of piecewise functions and
it implies that the calculated chemical free energy difference cannot exceed the
maximum transformation energy for phase transformations between marten-
site variants. Note that the higher-order potentials developed in [1,2,23,76]
do not have this limitation. Provided ∆β (T ) reaches this limiting value, it
will occur for temperatures below TM where the martensite nodes converge to
zero.

Additionally, there is a temperature TA > TM such that for temperatures
T > TA, there are no martensite equilibria. For a single layer, T > TA
corresponds to the high-temperature austenite state. Figure 2 illustrates (4)
and (10) for the full range of temperatures assuming ∂∆β

∂T
< 0.
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2.1.2 Gibbs Free Energy

A Gibbs free energy density, which incorporates the work due to applied stress
σ, can be defined as

G (ε, σ, T ) = ψ (ε, T )− σε, (12)

where σ is the stress conjugate to ε. Given a stress σ at temperature T , stable
equilibrium strains must satisfy

∂G

∂ε
= 0 and

∂2G

∂ε2
> 0. (13)

The equilibrium stress-strain relationship dictated by (13) yields a linear
Hooke’s law with isothermal stress-strain hysteresis, as illustrated in Figure
3. The strain values at which jumps occur coincide with the nodes ±γM (T )
and ±γA (T ) since they are also inflection points of the Helmholtz energy. We
define the temperature-dependent transformation stresses

σA (T ) = EAγA (T ) (14)

and
σM (T ) = EM (γM (T )− εT ) , (15)

corresponding to the stress values at the jumps.

For a fixed stress and varying temperatures, the necessary conditions in (13)
yield a hysteretic strain-temperature hysteresis relation having the form illus-
trated in Figure 4. For the stress-free Helmholtz free energy, we specify TM
and TA as temperatures where austenite and martensite, respectively, become
unstable. In the case of the Gibbs free energy, the temperature values where
austenite and martensite become unstable depend on stress and we denote
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M and T σ

A. After describing the chemical free energy in the next
section, we derive relations for σA, σM , T σ

M , and T σ
A.

2.1.3 Chemical Free Energy

In a manner similar to that employed in [5,31,68,94,96], we model the chemical
free energies as

βα (T ) =
Z T

TR
cαdT + uα − Tsa

= cα (T − TR) + uα − Tsα, (16)

where cα are specific heat capacities, which we assume to be explicitly temperature-
independent. The constants uα denote the internal energies at reference tem-
perature TR, and the sα are specific entropies of the form

sα =
Z T

TR

cα
T
dT + ηα

= cα ln
µ
T

TR

¶
+ ηα, (17)

where ηα are the constant entropies at TR. The difference in the chemical
potentials with a common reference temperature simplifies to

∆β (T ) = ∆u−∆ηT +∆c
∙
T − TR − T ln

µ
T

TR

¶¸
, (18)

where∆u = uA−uM ,∆η = ηA−ηM , and∆c = cA−cM . As done in [41,68,71],
we choose the reference temperature to coincide with the equilibrium temper-
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ature Teq where ∆β (Teq) = 0. Therefore,

∆β (TR) = ∆u−∆ηTR

= ∆u−∆ηTeq = 0.

This then implies that, TR = Teq = ∆u/∆η. We specify that Teq satisfies the
conditions Teq > 0 and TM < Teq < TA. Therefore, ∆u and ∆η are nonzero
and do not differ in sign for TR = Teq.

We now show that ∆u,∆η > 0. We first note that

∂∆β

∂T
= −∆s

= −∆c ln

Ã
T

Teq

!
−∆η. (19)

Suppose ∆η < 0. If ∆c ≤ 0, then ∂∆β
∂T

> 0 and ∆β (T ) > 0 for all T > Teq.
However, as discussed in Section 2.1.1, we require ∆β (TA) < 0. Hence, ∆η
must be positive when ∆c ≤ 0.

If ∆c > 0, then ∂∆β
∂T

> 0 and ∆β (T ) < 0 for all positive T < Teq. However,
we require ∆β (TM) > 0. So, ∆η must be positive when ∆c > 0. Therefore,
we have ∆u > 0 and ∆η > 0.

The phase-dependent specific heat capacity of SMAs is not well-understood
and measured values vary greatly. Both positive and negative values of ∆c
have been measured [26,41,69] and some SMA models assume that ∆c = 0
with little or no experimental evidence [68,94]. The assumption that∆c = 0 is
equivalent to making a first order Taylor approximation to (18) about T = TR
since

∆β (T ) = ∆u−∆ηT − ∆cTR
2!

(T/TR − 1)2 +O
³
(T/TR − 1)3

´
. (20)

Of course, the first-order truncation is a good approximation in cases where
temperatures vary only in a neighborhood of TR and when ∆c ≈ 0.

We can write (18) in the non-dimensional form

b (θ) = 1− θ + a [θ − 1− θ ln (θ)] , (21)

where b (θ) = ∆β (T ) /∆u, θ = T/Teq, and a = ∆c/∆η. Figure 5 illustrates
(21) for a ≥ 0.

As discussed in Section 2.1.1, for (18) to be consistent with (10) at tempera-
tures below TM , we require∆β (T ) ≤ EMε2T/2. This condition can be satisfied
for all T only when a ≥ 0. For a > 0, b (θ) is concave with a single maximum
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Fig. 5. The non-dimensional chemical free energy (21) for various ∆c ≥ 0
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∆c = 0 (a = 0) case.

bmax at θ = e−1/a. Therefore,

bmax = 1 + a
³
e−

1
a − 1

´
≤ 1
2

EMε2T
∆u

. (22)

Also, we note that while for all values of a there exists a zero at θ = 1, for
a ≥ 1 there exists a second zero that does not correspond to a martensite-
austenite equilibrium temperature (see Figure 5). Therefore, combining (22)
with a < 1, we establish the condition

e−1 < 1− a
³
1− e−

1
a

´
≤ 1
2

EMε2T
∆u

(23)

on the chemical free energy parameters to remain consistent with our definition
of the Helmholtz free energy at low temperatures. If energy parameters are
such that (23) is violated (e.g., measured ∆c < 0), we enforce consistency
by setting ∆β (T ) = EMε2T/2 for all T < TM where ∆β (T ) > EMε2T/2 and
setting ∆β (T ) = 0 for all T < TM where ∆β (T ) < 0.

2.1.4 Local Transformation Stresses and Temperatures

Having specified the chemical free energy∆β (T ) in (18), we wish to determine
the explicit temperature-dependence of the local transformation stresses (14)
and (15). Expressions for the transformation stresses in SMAs typically are
determined from an approximation of a modified Clausius-Clapeyron equation,
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which describes the effect of hydrostatic pressure on transformation temper-
atures in a thermodynamic system [1,41,71,82,103]. However, we can obtain
the expressions directly from (6) and (11).

For T ≥ TM , (6) is underdetermined given only ∆β (T ). As an additional
constraint we introduce

δ = σA (T )− σM (T ) , (24)

where δ is a material-dependent energy density that characterizes the hystere-
sis size [94]. In general, δ is temperature-dependent, as observed in [41,71,95].
In our present treatment, we approximate δ as a constant and we introduce
an implicit temperature-dependence in Section 2.4.

It follows from the construction of the Gibbs potential that σA (T ) > σM (T )
for T ≥ TM . Furthermore, γM (T ) ≥ 0 in (15) for all T from which it follows
that δ ∈ (0, EMεT ]. With (24), we can formulate (6) solely in terms of σA (T ).
This yields

F (σA (T )) =
δεT
2
−∆β (T ) , (25)

where

F (σ) = σ

"
εT +

(1−Er)

2EM
(σ − δ)

#
, (26)

and Er = EM/EA is less than one for shape memory compounds. Solving
(25) for σA (T ) and recalling that σA (T ) ≥ 0 yields

σA (T ) =
δ

2
− EM

1−Er
εT +

s
δ2

4
+

EM

1−Er

µ
EM

1−Er
ε2T − 2∆β (T )

¶
. (27)

Note that the radicand in (27) is guaranteed to be non-negative provided

∆β (T ) ≤ 1

1−Er

EMε2T
2

+
1−Er

EM

δ2

8
. (28)

Since (1−Er)
−1 > 1 and we enforce ∆β (T ) ≤ EMε2T/2, (28) always holds.

The expression for σM (T ), when T ≥ TM , follows from (24) and (27). For
T < TM , (11) yields

σM (T ) = − 2
εT

∆β (T ) . (29)

In this case, σM (T ) corresponds to the critical detwinning stress to the M−

variant.

We can also derive relations for the transformation temperatures. The stress-
free transformation temperature TM satisfies

∆β (TM) =
δεT
2

(30)
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since σA (TM) = 0. Furthermore, at TA where martensite becomes unstable,
γM (TA) = εT . Hence,

∆β (TA) = −δεT
2

. (31)

Under a nonzero stress σ, a transformation from austenite to martensite occurs
when σA (T

σ
M) = σ. In addition, σM (T σ

A) = 0 holds. Therefore, the stress-
dependent transformation temperatures satisfy

∆β (T σ
M) =

δεT
2
− F (σ) (32)

and

∆β (T σ
A) =

δεT
2
− F (σ + δ) , (33)

whose solutions represent the inverses to σA (T ) and σM (T ), respectively. For
∆c 6= 0, (30)—(33) must be solved numerically.

Figure 6 illustrates the relationship between the transformation stresses and
temperatures for a = 0, 1 and nominal values of the material constants. The
temperature-dependent austenite-to-martensite critical stress σA corresponds
to the stress-dependent austenite-to-martensite transformation temperature
T σ
M . Similarly, the martensite-to-austenite unloading stress σM for tempera-
tures T ≥ TA corresponds to T σ

A. For T < TA, −σM (T ) is the critical detwin-
ning stress. The plateau exhibited by the critical stress for low temperatures
is a result of enforcing ∆β (T ) ≤ EMε2T/2 and corresponds to γM (T ) = 0.
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Fig. 6. The phase transformation stresses and transformation temperatures normal-
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2.2 Phase Evolution

Based on the local free energy, we follow the approach in [3,94] and model the
phase evolution with the rate laws

ẋ− (t) = PA−xA (t)− P−x− (t)

ẋA (t) = P−x− (t)− PA−xA (t) + P+x+ (t)− PA+xA (t) (34)

ẋ+ (t) = PA+xA (t)− P+x+ (t) ,

where . denotes differentiation in time. The functions P± = P± (σ, T ) denote
the transition rates for M± lattice elements (transforming to either austenite
or a martensite variant), while PA± = PA± (σ, T ) denote the transition rates
for austenite transforming to M±. Using the conservation relation (1), the
rate law reduces to

ẋ− (t) = − (P− + PA−)x− (t)− PA−x+ (t) + PA−

ẋ+ (t) = − (P+ + PA+)x+ (t)− PA+x− (t) + PA+. (35)

For the case T ≤ TM , the rate law for martensite variants simplifies to a single
ODE

ẋ+ (t) = − (P+ + P−)x+ (t) + P−, (36)

since x− (t) + x+ (t) = 1.

2.3 Transition Rates

We formulate the transition rates using the classical transition state theory of
nonequilibrium processes [36,86]. The theory stipulates that, due to thermal
excitation, lattice particles vibrate about equilibrium positions in energy wells.
Furthermore, it contends that the vibrations are manifested as a temperature-
dependent probability that the particles can overcome energy barriers sepa-
rating the wells. For example, in the case of the local equilibrium conditions
(13), the theory implies that thermally excited layers can transform from A
to M+ even when σA and T σ

M are not reached.

Transition state theory quantifies the transition rate by combining the likeli-
hood that a particle will overcome a barrier with the frequency of attempts a
particle makes to overcome a barrier. The theory derives the likelihood that
a lattice element will attain specific energy G using the Boltzmann relation

µ (G) = Ce−GV/kBT , (37)

where C is a normalization factor chosen to yield a likelihood of one when
integrating µ (G) over all admissible energy states. The parameter kB =
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1.380658 × 10−23 JK−1 is the Boltzmann constant and we assume the repre-
sentative layer volume V is constant. We compute the transition rate for a
martensite layer by multiplying (37) with the attempt frequency [86] to yield

P± (σ, T ) =

s
kBT

2πmV 2/3

e−G(±γM ,σ,T )V/kBTR±∞
±γM e−G(γ,σ,T )V/kBTdγ

(38)

given a stress σ and temperature T , where m is the mass of the layer and
G (±γM , σ, T ) is the Gibbs potential (12) at nodes ±γM (T ). In transition
state theory, G (±γM , σ, T ) is termed the activation energy. Note that we set
the integration limits for the normalization factor to cover all possible stable
(or metastable) martensite equilibrium states, neglecting the unstable states
defined by the concave parabolae in (4). Likewise, the transition rate for an
austenite layer (T > TM) is given by

PA± (σ, T ) =

s
kBT

2πmV 2/3

e−G(±γA,σ,T )V/kBTR γA
−γA e

−G(γ,σ,T )V/kBTdγ
. (39)

Using (14), (15), and (25), we simplify the normalization integrals into tran-
scendental functions of transformation stresses. This yields

P± (σ, T ) =
1

τ

√
Er

erfcx
h
(σM ∓ σ) /

√
2ωM

i , (40)

where
erfcx (y) = ey

2

(1− erf (y)) (41)

is the scaled complementary error function and erf (y) = 2/
√
π
R y
0 e

−r2dr is the
standard error function. It then follows that PA± can be expressed as

PA± (σ, T ) =
1

τ

n
± erfcx

h
(σ ∓ σA) /

√
2ωA

i
∓e∓2σAσ/ωA2 erfcx

h
(σ ± σA) /

√
2ωA

io−1
. (42)

For T ≤ TM , where γA (T ) = 0, there is at most one energy state, so we define
PA± (σ, T ) ≡ τ−1. The quantity

τ = π

s
m

EAV 1/3
(43)

represents a transformation relaxation time and the functions

ωα (T ) =

s
Eα

kBT

V
(44)

quantify thermal energy densities for martensite and austenite.
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Asymptotic analysis in [4] shows that erfcx (x) ≈ (√πx)−1 for large positive
arguments and it is unbounded as x→−∞. Therefore, limσ→±∞ P± (σ, T ) =
0 and limσ→±∞ PA± (σ, T ) =∞. Furthermore, at fixed temperatures

lim
ωM→0

P± (σ, T ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 ±σ > σM (T )

τ−1
√
Er ±σ = σM (T )

∞ ±σ < σM (T )

(45)

and

lim
ωA→0

PA± (σ, T ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 ±σ < σA (T )

τ−1 ±σ = σA (T )

∞ ±σ > σA (T ) .

(46)

The unbounded limits are a result of our mathematical description of the
Boltzmann likelihoods. Physically, the unboundedness implies that a trans-
formation will necessarily occur at precise thresholds of stress and temper-
ature. Therefore, for small relative thermal energy (large volume V and
no relaxation), the transformation behavior is governed by the deterministic
equilibrium conditions (13). Otherwise, the stochastic transition rates imply
that transformations can occur even when (13) do not hold. Furthermore,
limωM→∞ P± (σ, T ) = τ−1

√
Er (Boltzmann likelihood of one), which is the

value for σ = ±σM (T ), and limωA→∞ PA± (σ, T ) = ∞. When implementing
(40) and (42), we define maximum likelihoods to occur at the transformation
stresses, which implies that

P± (σ, T ) =

⎧⎪⎨⎪⎩
τ−1
√
Er ±σ ≤ σM (T )

τ−1
√
Er

erfcx[(σM∓σ)/
√
2ωM ]

±σ > σM (T ) .
(47)

Likewise, for T ≥ TM and |σ| < σA, (42) holds. Otherwise, we have that

PA± (σ, T ) =

⎧⎪⎨⎪⎩
τ−1 T < TM

τ−1

erf[
√
2σA/ωA]

±σ ≥ σA (T ) .
(48)

Note that (48) is unbounded, since

lim
T→TM+

PA± (±σA, T ) =∞. (49)

For this case, we heuristically assign a maximum greater than or equal to
τ−1. Figure 7 illustrates (47) and (48) for small thermal energy in stress-
temperature space.
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Ultimately, both (40) and (42) have qualities similar to those of a normal dis-
tribution about σ, where the transformation stresses σα act as means and ωα as
standard deviations. Increasing thermal energy densities (large variances) in-
creases the likelihood that transformations will occur when (13) do not hold.
Diminishing thermal energy densities (small variances) restrict transforma-
tions to occur only when (13) are satisfied. Figure 8 illustrates the transition
rates for increasing ωα at a fixed temperature and decreasing activation vol-
umes.

2.4 Expected Local Strains

Given the temperature evolution T (t) and the phase fractions modeled by
(35), we can now quantify the thermomechanical response of the material.
Boltzmann statistics govern the response of individual martensite and austen-
ite layers. Accounting for thermal energy, the expected strain exhibited by
martensite layers are given by

hε−i =
Z −γM
−∞

γµ (G (γ, σ, T )) dγ (50)
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and
hε+i =

Z ∞
γM

γµ (G (γ, σ, T )) dγ, (51)

where the Boltzmann likelihood µ (G) from (37) acts as a probability density
function. Likewise for austenite layers (T > TM), the expected strains are

hεAi =
Z γA

−γA
γµ (G (γ, σ, T )) dγ. (52)

For T ≤ TM , µ (G) = 1 and γA = 0, so hεAi = 0. Simplifying the integrals
yields

hε±i = ±
s
2

π

τωM (T )

EM

√
Er

P± (σ, T ) +
µ

σ

EM
± εT

¶
(53)

and

hεAi =
s
2

π

τωA (T )

EA
[PA− (σ, T )− PA+ (σ, T )] +

σ

EA
(54)

in terms of the transition rates (40) and (42). From (53) and (54), it is appar-
ent that the expected strains are solutions to (13) with perturbations whose
magnitudes depend on the thermal energy. Note that at fixed temperatures

lim
ωM→0

hε±i =
⎧⎪⎨⎪⎩

σ
EM

± εT ±σ ≥ σM (T )

±γM (T ) ±σ < σM (T )
(55)
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and

lim
ωA→0
T>TM

hεAi =
⎧⎪⎨⎪⎩

σ
EA

|σ| ≤ σA (T )

±γA (T ) ±σ > σA (T ) .
(56)

Furthermore, limσ→∓∞ hε±i = ±γM and limσ→±∞ hεAi = ±γA. Figure 9 illus-
trates the stress and temperature-dependence of (53) and (54).

With the expected strain of a layer in each phase thus formulated, the average
local strain can be expressed as the weighted sum

ε̄mech =
X
α

xα hεαi . (57)

In addition to the strain εmech attributed to mechanical deformation and phase
transformation processes, there are strains due to local thermal expansion as
the temperature varies over time. We model the local thermal strain as

ε̄ther = λ̄ (xα) (T − T0) (58)

for the phase-dependent thermal expansion coefficient λ̄ (xα) =
P

α λαxα (t),
and initial temperature T0. Therefore, the total average strain of a layer in
response to a combination of applied stress and temperature is

ε̄ = ε̄mech + ε̄ther. (59)

Typically, ε̄ther is negligible compared to ε̄mech for moderate temperature
changes as would be encountered in bulk superelastic applications. How-
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ever for thin films in MEMS applications, thermal strains can have significant
effects on microdevice behavior (e.g., see [49,79]).

Figure 10 illustrates stress-strain (superelastic) and temperature-strain (SME)
hysteresis predicted by (57). For diminishing thermal energy, hysteresis in-
creases to a maximum and corresponds to the equilibrium solution (13). For
increasing thermal energy densities, more lattice layers overcome energy bar-
riers before transformation thresholds are reached, resulting in a smaller hys-
teresis loops. If the thermal energy is sufficiently large, all energy barriers
become surpassable at any stress and temperature. In this case, layers attain
the global minimum of (12) and there is no hysteresis. We note that the di-
minishing hysteresis reflects an implicit temperature-dependence of δ in (24),
where ∂δ

∂T
< 0 provided limT→∞ σα (T ) /ωα (T ) = 0.

In the next section, we model the variation of temperature over time due to
phase transformations and ambient conditions.

2.5 Thermal Evolution

The internal temperature of an SMA is coupled to the thermomechanical phase
transformations and it strongly depends on operating conditions. We describe
temperature changes in the material via a simplified balance of internal energy,
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similar to the developments in [14,26,94]. In this case,

c̄ (xα) Ṫ (t) = −
X
α

hαẋα +H (xα, T ) , (60)

where c̄ (xα) =
P

α cαxα (t) represents a linear mixture of phase-dependent spe-
cific heats. In the following subsections, we describe the components forming
the right-hand-side of (60), which include transformation-induced heat gener-
ation and heat exchange with the environment.

2.5.1 Transformation Enthalpy

The first term on the right-hand side of (60) accounts for rate-dependent heat
generation and absorption during phase transformations. The release and
absorption of transformation enthalpies can be significant and is a source of
the material self-heating observed in [95]. The specific enthalpies hα have the
form

hα = gα + Tsα. (61)

In (61), gα is a local minimum of (12) and sα is the specific entropy from (17).
Given stress σ at temperature T ,

gA =
−σ2
2EA

+∆β (T ) (62)

g± =
−σ2
2EM

∓ σεT . (63)

Since
P

α ẋα (t) ≡ 0, we haveX
α

hαẋα = − (hA − h−) ẋ− − (hA − h+) ẋ+, (64)

and

hA − h± =
σ2

2

µ
1

EM
− 1

EA

¶
± σεT +∆c (T − TR) +∆u. (65)

The differences in martensite and austenite specific enthalpies in (65) are
referred to as latent heats of transformation. Note that for T ≤ TM , (64)
reduces to X

α

hαẋα = −2σεT ẋ+. (66)

2.5.2 Heat Transfer

Heat transfer is a phenomenon pertaining to a physical system of which an
SMA is a component, rather than a constitutive property of the material.
However, for basic actuator simulations and model comparisons to thermo-
mechanical tests, we introduce the thermal interaction of the material with
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its environment via H (xα, T ) in equation (60). For our uniaxial model, we
assume that the temperature is spatially uniform in SMAs such as thin films
and wires. A uniform longitudinal temperature distribution can be realized in
a thermal chamber or in transducers with resistive heating. Additionally we
assume that internal temperature can be approximated effectively by models
of heat transfer at the surface. We establish the validity of this assumption
by calculating the dimensionless Biot number Bi (see [27,47,69,96]) given by

Bi =
hc
kαΩ

, (67)

where hc is the phenomenological average convection heat transfer coefficient,
kα is the phase-dependent thermal conductivity, and Ω is the surface area-
to-volume ratio. For Bi ¿ 1, the temperature changes within the material
are negligible relative to temperature differences between the surface and sur-
roundings [47]. For SMAs such as NiTi, the conductivity kα is on the order
of 10 Wm−1K−1 and hc is on the order of 1 and 102 Wm−2K−1, depending on
ambient flow conditions [14,69]. Furthermore, for rectangular geometries of
thickness d, width w and length L,

Ω = 2
µ
1

d
+
1

w
+
1

L

¶
. (68)

Likewise, for cylindrical geometries of diameter d,

Ω = 2
µ
2

d
+
1

L

¶
. (69)

Hence, for thin films and wires where d ¿ {L,w}, Ω is O (d−1) and Bi is
O (10m−1 d). In the applications under consideration, SMA thicknesses are
at most 1 mm, so Bi¿ 1 is satisfied.

Incorporating surface convection and radiation, and resistive Joule heating,
the term H in (60) can be expressed as

H (xα, T ) = − (hc + hr)Ω [T (t)− TE (t)] + J (xα, T ) , (70)

where TE (t) is the prescribed external temperature. The radiation heat trans-
fer coefficient is given by

hr = �σB
³
T 2 + T 2E

´
(T + TE) ,

where � ∈ [0, 1] is the surface emissivity (. 0.50 for metals, . 0.20 for films)
and σB = 5.67051×10−8Wm−2K−4 is the Stefan-Boltzmann constant. In gen-
eral, hc is also (weakly) temperature-dependent and is estimated from empiri-
cal arguments involving surface geometry and external fluid flow. In our treat-
ment, we assume hc is constant and we refer the reader to [14,27,47,55,69,85,87]
for theoretical and empirical aspects of hc pertinent to SMAs. Note that in
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forced convection conditions, hc is typically one to three orders of magnitude
greater than hr over all temperatures.

Lastly, in (70), J (xα, T ) incorporates heat generation via resistive Joule heat-
ing. For current-controlled applications,

J (xα, T ) = ρ̄e (xα, T )
I2

ζ2
, (71)

where I is the applied current and ζ is the cross sectional area of the current
path. The effective resistivity

ρ̄e (xα, T ) =
X
α

(ρeα + λeαT )xα (t) (72)

includes the phase-dependent electrical resistivities ρeα, and linear tempera-
ture coefficients of resistivity λeα. If Joule heating results from a prescribed
potential difference, we have

J (xα, T ) =
1

ρ̄e (xα, T )

V 2
e

L2
, (73)

where Ve is the applied voltage and L is the actuator length.

The temperature-dependence of resistivity can be significant when quantifying
resistivity-temperature hysteresis [106,111]. However, in cases where Joule
heating is an impulse heat source, as is typical for MEMS applications, the
explicit temperature-dependence is negligible.

In general, the geometric quantities Ω, ζ, and L are functions of uniaxial strain.
For example, in a rectangular geometry Ω changes by a factor of (1− νε)−1,
ζ by a factor of (1− νε)2, and L by a factor of (1 + ε), where the isotropic
Poisson ratio ν ∈ [0, 0.5] (ν ≈ 0.33 for isochoric NiTi). Since typical actuator
strains are at most on the order of 10%, the relation (70) can change on the
order of 5-15% due to deformations. To facilitate model computation, we
approximate Ω, ζ, and L as constants.

We have modeled the phase fractions, expected strains, and temperature with
free energy expressions that are valid for local lattice behavior. Equation
(59) also quantifies macroscopic strains for specially-prepared homogeneous,
single-crystal SMAs in which the bulk lattice exhibits uniform local behavior.
In the next section, we extend our uniform lattice model to more general
inhomogeneous compounds, where the local thermomechanical behavior can
vary throughout the material.
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3 Nonuniform Lattice Model

Typical single-crystal and polycrystalline SMA compounds contain precipi-
tates, dislocations, and process-induced impurities. Moreover, inhomogeneous
and polycrystalline materials have a nonuniform lattice structure that induces
variations in the local material response. In this section, we model the hystere-
sis induced in nonuniform SMA lattices and the effects of nonuniform stress
fields by employing a statistical homogenization technique. For a discussion
of general statistical homogenization concepts, we refer the reader to [62,86].
Our approach is based on the assumption that measurements of macroscopic
phenomena, such as stress-strain hysteresis and transformation temperatures,
yield quantities that reflect a distribution of local variations. In the context
of statistical homogenization, the uniform lattice model (59) predicts the ex-
pected local response when given effective macroscopic material parameters
as input.

3.1 Variations in Hysteresis

One approach to account for inhomogeneities is to treat measurements of
macroscopic hysteresis parameters, such as εT and δ, as manifestations of
stochastic distributions, rather than deterministic values. In particular, vari-
ations of δ and εT produce variations in the transformation thresholds σA, σM ,
TM and TA via (27), (30), and (31), and they reflect variations in the chemical
free energy parameters. We model the effects of varying δ on the observed
macroscopic strain ε by considering the statistical average

ε (σ, T ) =
Z ∞
0

ε̄ (σ, T ; δ) p1 (δ) dδ, (74)

where ε̄ is the local strain in (59), and p1 is a probability density function
defined on [0,∞). Reflecting the boundedness of δ, we represent p1 as a log-
normal distribution on the interval (0, EMεT ], given EM and εT .

As detailed in [72], the normalized log-normal probability density function is
given by

p1 (δ) =
1

ẑ
√
2πδ

e− ln(δ/µ̂)
2/2ẑ2 (75)

with parameters ẑ > 0 and µ̂ > 0. As illustrated in Figure 11, the log-
normal distribution is continuous and right-skewed, and the logarithm of the
distributed variable has a normal distribution. Increasing ẑ and µ̂ correspond
to increasing skewness. In cases where mean δ̄ and standard deviation zδ of
δ are given (e.g., experimental estimates), the log-normal parameters can be
computed via the relations

µ̂ = δ̄

Ã
z2δ
δ̄2
+ 1

!− 1
2

, ẑ2 = ln

Ã
z2δ
δ̄2
+ 1

!
. (76)
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Fig. 11. The log-normal probability density function compared with its normal coun-
terpart. The peak of the skewed log-normal function corresponds with the mode
and the peak of the normal curve corresponds with the mean µ. The areas under
the curves correspond to the same probability.

3.2 Effective Stress

In addition to the model (74) which incorporates material inhomogeneities,
we quantify the effects of nonuniform stress fields. We represent the local
effective stress σe as a perturbation of the macroscopic applied stress

σe (t) = σ (t) + s, (77)

where σ is the time-varying applied stress and s is a constant perturbation,
which we assume to be a random variable. The observed macroscopic strain
is then a response to a distribution of effective stresses in the material

ε (σ, T ) =
Z ∞
−∞

ε̄ (σe, T ) p2 (s) ds, (78)

where p2 is a probability density function defined on (−∞,∞). We assume s is
normally distributed, so we take p2 to correspond with the normal distribution

p2 (s) =
1√
2πzσ

e−s
2/2z2σ (79)
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with standard deviation zσ. For certain geometries and load conditions, one
can alternatively employ the trigonometric averaging procedure proposed in
[83] to accommodate stress variations on rotated polycrystal grains. In par-
ticular, by distributing about the applied stress, we account for polycrystal
grains undergoing stress and temperature-induced transformations at varying
applied stresses and temperatures.

3.3 Macroscopic Model

The combination of (74) and (78) yields the relation

ε (σ, T ) =
Z ∞
0

Z ∞
−∞

ε̄ (σe, T ; δ) p1 (δ) p2 (s) dsdδ (80)

for the total macroscopic response to a time-varying stress σ (t) and an evolv-
ing internal temperature T (t). In addition to the measured strain, the macro-
scopic phase fractions xα and internal temperature T are also representations
of the underlying distributions. We compute these macroscopic quantities
by replacing ε̄ with xα and T in (80). Table 1 summarizes the parameters
used in the local and macroscopic models. In the next section, we discuss
implementation issues associated with the macroscopic model (80).

4 Numerical Implementation and Simulations

4.1 Implementation

In this section, we summarize aspects of the numerical implementation of the
macroscopic model. To obtain the macroscopic strain response given a time-
varying stress, environment temperature, and current or voltage, we solve the
local model over distributed δ and σe in (80). At the core of the local model
is the nonlinear system of ODEs for the phase fractions and temperature. We
express the system as⎡⎢⎣ ẋ− (t)ẋ+ (t)

Ṫ (t)

⎤⎥⎦ =M (xα, T )

⎡⎢⎣x− (t)x+ (t)
T (t)

⎤⎥⎦+
⎡⎢⎣PA− (σ, T )
PA+ (σ, T )
H (xα, T )

⎤⎥⎦ , (81)

where the state-dependent matrixM is given by

M (xα, T ) =

⎡⎢⎣ 1 0 0
0 1 0

LA−
c̄(xα)

LA+
c̄(xα)

1
c̄(xα)

⎤⎥⎦
⎡⎢⎣− (P− + PA−) −PA− 0

−PA+ − (P+ + PA+) 0
0 0 1

⎤⎥⎦
and LA± = hA − h±. Recall that the latent heats and the transition rates
depend on stress and temperature. The first step in solving the local model is

28



Parameter Physical Description

Physical Parameters

EA, EM Elastic moduli (linear).

λA, λM Thermal expansion coefficients (linear).

cA, cM Volumetric specific heat capacities (ρcV ).

∆u Specific internal energy difference at reference.

∆η Specific entropy difference at reference.

V Activation volume (local).

τ Transformation relaxation time.

Hysteresis Parameters

εT Transformation strain.

δ̄, zδ Mean hysteresis thickness and standard deviation.

zσ Effective stress standard deviation.

Heat Transfer Parameters
ρeA, ρ

e
M Resistivities.

λeA, λ
e
M Temperature coefficients of resistivity.

� Surface emissivity.

hc Convective heat transfer coefficient.

Geometric Parameters
L, d,w Length, thickness (or diameter), width.

Table 1. Local and macroscopic model parameters.

to obtain initial data x± (0) and T (0) from experimental conditions. Typical
initial conditions are the high-temperature state where x± (0) = 0 or the
unstressed low temperature (self-accommodating) state where x± (0) = 1/2.
Secondly, we calculate necessary model parameter estimates, as described in
the next section, from given material data, such as the distributed value of δ.
Next, we solve (81) using the Matlab ODE routine ode15s, which is a variable
order solver based on the numerical differentiation formulas. To compute the
integrals in the transition rates and the expectation strains, we utilize the
Matlab routines erf and erfcx, which approximate the functions directly with
polynomials. Finally, we compute the thermal strains and total local strain
given the expectation strains and the ODE solution.

To integrate the macroscopic model, we approximate the distribution inte-
grals with composite Gauss-Legendre quadrature on finite intervals. Here we
have adapted the scalar, univariate formulation described in [61] to the case
of vector-valued functions. For scalar argument x we define the vector-valued
function �f (x) ∈ <1×m. The n-point composite Gauss quadrature approxi-
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mates the component-wise integral �F ∈ <1×m on interval [ax, bx],

�F =
Z bx

ax

�f (x) dx

≈ bx − ax
2kx

�c|
kxX
j=1

�fj (82)

for kx uniform subintervals of [ax, bx], with n quadrature points in each subin-
terval. The vector of quadrature weights �c ∈ <n×1 is given by

�c = [c1, c2, · · · , cn]| . (83)

At the jth subinterval, we define �fj ∈ <n×m as

�fj =
h
�f (x1,j) , �f (x2,j) , · · · , �f (xn,j)

i|
, (84)

where the nodes

xij = ax +
bx − ax
2kx

(xi + 2j − 1) , i = 1 : n, j = 1 : kx (85)

are mapped from tabulated Gauss nodes xi on the standard interval [−1, 1].
For the full macroscopic model, we require double integration, so we employ
the composite n-point quadrature rule iteratively on �f as a function of scalars
x and y

F̄ =
Z by

ay

Z bx

ax

�f (x, y) dxdy

≈
Ã
bx − ax
2kx

!Ã
by − ay
2ky

! kyX
jy=1

nX
i=1

ci�c
|

kxX
jx=1

�fjx,i,jy , (86)

where ky is the number of subintervals in [ay, by] and ci is the ith component
of �c. The function �fjx,i,jy ∈ <n×m is evaluated at the jthx x-subinterval and the
jthy y-subinterval

�fjx,i,jy =
h
f
³
x1,jx , y1,jy

´
, f
³
x2,jx , y2,jy

´
, · · · , f

³
xn,jx, yn,jy

´i|
. (87)

The y-nodes are given by

yij = ay +
by − ay
2ky

(xi + 2j − 1) , i = 1 : n, j = 1 : ky.

In our implementation, �fjx,i,jy corresponds to the integrand of (80) where the
local strain solution ε̄ (σ + σe, T ; δ) is discretized over an interval of m time
steps. In addition, we take the finite integration intervals to correspond with
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Nodes Weights

±
√
15−2√30√
35

18+
√
30

36

±
√
15+2

√
30√

35
18−√30
36

Table 2. Four-point Gaussian quadrature nodes and weights on [-1,1].

[µ− qz, µ+ qz], where µ is the arithmetic mean and qz is a multiple of the
standard deviation for each distribution. For q ≥ 2, the interval encompasses
at least 95.4% of the probability. In our calculations, we use a four-point
quadrature rule having the standard nodes and weights listed in Table 2.
Finally, we note that the quadrature solves (81) at [(n− 1) k + 1]2 nodes and
that the overall efficiency of the model algorithm primarily depends on the
rapid computation of ε̄.

4.2 Simulations

In this section, we demonstrate and analyze the material behavior predicted by
the model. Specifically, we illustrate superelasticity, the shape memory effect,
and heat transfer phenomena pertinent to thin-film SMAs. Table 3 summa-
rizes the default parameters used in this section’s simulations where we assume
a rectangular SMA geometry. Additionally, we assume a material density of
ρ = 6450 kg/m3, corresponding to published values of polycrystalline NiTi
wires. Since we do not demonstrate temperature-resistivity hysteresis, we do
not specify the temperature coefficients of resistivity λeA and λeM .

The mean local energy parameters∆u = 73.8MJ/m3,∆η = 0.218MJ/m3K−1

are estimated from (18) and (25) given the parameters in Table 3, σA (353 K) =
212 MPa, and Teq = 338 K. In solving the macroscopic model, we recalculate
the estimates of ∆u and ∆η in this manner for each distributed value of δ.

4.2.1 Superelasticity

Figure 12 illustrates superelasticity predicted by the model. The initial state
is taken to be austenite at ambient temperature and a load is prescribed at a
rate of 1 MPa/s. In contrast to the abrupt transitions illustrated in Figure 12
for the local material behavior, the macroscopic model predicts gradual and
asymmetric transitions. In addition to a nonuniform lattice structure, the
internal temperature evolution is a source of the gradual transitions. During
the transformation from austenite to detwinned martensite, transformation
enthalpy is released. Some of the heat is transferred to the environment via
convection while the remainder produces an increase in the internal temper-
ature as shown in Figure 12. Therefore, the temperature-dependent loading
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Physical Value Units
EA, EM 22.4, 13.7 GPa
λA, λM 11.0, 6.6 10−6/K
cA , cM 3.744, 2.903 MJ /m3K−1

V 6903 nm3

τ 1.1 ms

Heat Transfer
ρeA, ρ

e
M 100,80 µΩ cm

� 0.10
hc 10 W /m2K−1

Hysteresis
εT 0.0248
δ̄, zδ 152, 35 MPa
zσ 25 MPa

Geometric
L 1.5 cm
d 100 µm
w 1.8 mm

Table 3. Mean local parameter values used by default in simulations. Changes from
the default in particular simulations are noted in the text.

transformation stress increases during a transformation. The reverse process
occurs for the unloading stress.

Figure 13 illustrates the temperature-dependent stress-strain hysteresis pre-
dicted by the model. We start with temperatures at which austenite is sta-
ble. At cooler temperatures, self-accommodating martensite (50% M+, 50%
M−) is the initial phase and the stress-induced transformation corresponds to
martensite detwinning. Agreeing with experimental observations in [42,50],
the yield stress from austenite to martensite is shown to increase as tem-
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Fig. 12. Superelasticity at TE = 358 K. The release and absorption of transforma-
tion enthalpies yield internal temperature changes.
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Fig. 13. The temperature-dependence of the hysteresis. For T ≥ 348 K, austenite
is the initial phase. Self-accommodating martensite is the initial phase for lower
temperatures.

peratures increase, and the detwinning critical stress is shown to increase as
temperatures decrease at lower temperatures. In Section 6.2, we compare the
model to experimental superelasticity data.

4.2.2 Shape Memory Effect

Figure 14 illustrates the shape memory effect predicted by the model at a
fixed positive load. The initial state is high-temperature austenite, and cool-
ing and re-heating is achieved via convection by changing the external tem-
perature at a rate of 0.1 K/s. As with superelasticity, the transformation
enthalpies effect internal temperature changes, which in this case are small
compared to the overall internal temperature. Additionally, while the local
model describes steep transitions with distinct temperatures for the austenite-
martensite transitions (see Figure 4), the macroscopic model predicts gradual
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Fig. 14. Shape memory effect with a constant stress of 200 MPa. Cooling and
heating is achieved by natural convection and the deviations of the temperature
curve correspond with the release and absorption of transformation enthalpies.
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transitions where the beginning and end of the thermal transformations are
not distinctly defined.

Figure 15 illustrates the stress-dependence of thermal hysteresis predicted by
the model. The stress-dependent transformation temperatures are shown to
decrease as stress decreases. Also, the transformation strain from austenite
to detwinned martensite is shown to decrease rapidly at lower stresses. This
experimentally verified behavior is attributed to the fact that low stresses are
insufficient to induce a uniform transformation throughout the material (e.g.,
see [31,51]). The incorporation of effective stresses in (80) allows us to simulate
this phenomenon and we note that other models are unable to account for this
behavior [15,31,88]. In Section 6.3, we compare experimental SME data to
model predictions.
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Fig. 15. The stress-dependence of thermal hysteresis. The initial phase is austenite
at high temperatures and the low temperature phase is M+.

4.2.3 Heat Transfer Effects

Here we investigate heat transfer aspects of the model with examples pertain-
ing to thin-film SMA behavior. From (68), we see that the surface area to
volume ratio of thin films is approximately d−1. Accordingly, the effects of heat
transfer will be prominent for thin films, which are 2-3 orders of magnitude
thinner than typical bulk SMA wires and bars.

Figure 16 illustrates how thickness affects hysteresis in our model. Increased
heat transfer due to increasing Ω allows latent heat to be quickly absorbed
or released during transformations. Therefore, decreasing thicknesses yield
less hysteresis, which allow for full actuation at smaller changes in stress and
temperature.

In Figure 17, we demonstrate the actuation of a 10 µm thin-film SMA via
impulse Joule heating and forced convective cooling (hc = 300Wm−2/K). The
SMA is in a 303 K environment under a fixed stress of 100 MPa. Under these
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Fig. 16. Superelasticity (TE = 358 K) and SME (250 MPa) for different film thick-
nesses. The solid, dashed, and dotted curves are for d = 10, 100, and 1000 µm, re-
spectively. The standard deviations are taken to be zσ = 20MPa and zδ = 20MPa.

conditions, the SMA is deformed 3.2% as detwinned martensite. We simulated
a low voltage of 2 V for a duration of 10 ms, which increases the temperature
by 50 K and induces a partial transformation to austenite with 1.2% recovered
strain. A second and third impulse heating separated by 21 ms cooling times
yields a full transformation to austenite and full deformation recovery. Finally,
full reversion to martensite via forced convection is achieved in 50 ms. The
inner loop, which demonstrates that the model can maintain loop closure,
corresponds to the first partial heating-cooling cycle.

From the temperature evolution in Figure 17, we conclude that cooling time
in our model is the limiting factor for thin-film SMA actuator response. We
also note the plateau in the temperature evolution. The delay in cooling
corresponds with the phase transformation and is due to the exchange of
transformation enthalpies. Similar analytical and experimental results are
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Fig. 17. Joule heating of a thin-film SMA and cooling via forced convection. The
10 µm film is under a 100 MPa stress and is initially detwinned martensite. The
standard deviations are taken to be zσ = 35 MPa and zδ = 35 MPa.
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reported in [69,87] and we note that [73] concludes that the response of thin-
film SMA actuators is ultimately limited by the rate of phase transformations
rather than the cooling time.

Finally, Figure 18 compares the temperature evolution for different values of
hc. In this case, 5 V is applied once for 3 ms to induce a full transformation.
In each case, full recovery is achieved at approximately 320 K, and the shortest
total response time is 40 ms.
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Fig. 18. The time response of a 10 µm thin-film SMA. The solid, dash-dotted,
dashed, and dotted curves respectively represent hc = 100, 300, 500,
1000 W/m2K−1. Complete reverse transformation occurs at 320 K.

5 Parameter Identification

In this section, we discuss the identification of the model parameters in Ta-
ble 1 via a combination of direct measurements and model calculations. The
method of identification depends on the application under consideration as
well as on the type of experimental data available. We describe three methods.
The first pertains to stress-strain hysteresis, the second pertains to thermal
hysteresis, and the third method pertains to direct measurements of mater-
ial parameters without hysteresis data. Ultimately, a combination of these
methods may be warranted for certain applications.

As illustrated in Figure 19, the macroscopic model (80) employs the local
model as a kernel with certain parameters assumed to be manifestations of
underlying distributions. Accordingly, we use known aspects of the local hys-
teresis model to obtain estimates of macroscopic material parameters from
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Fig. 19. The average local material response (solid) given by (59) compared with
the statistically homogenized macroscopic response (dashed) given by (80).

measured hysteresis data. Estimates of the mean local parameters in Table 1
along with the distribution parameters, zδ and zσ provide us initial parameter
values for use in least squares fits to hysteresis data. We note that the acti-
vation volume V and the relaxation time τ typically must be estimated from
hysteresis data.

5.1 Stress-strain Hysteresis

One or more experimental stress-strain hysteresis curves are sufficient to esti-
mate most of the material parameters pertaining to superelasticity. As illus-
trated in Figure 20, the elastic moduli can be estimated from linear portions
of the loading or unloading curves. In particular, EA should be measured
from linear portions of loading curves at sufficiently high temperatures. Simi-
larly, EM can be measured from loading curves at relatively cool temperatures.
Also at cool temperatures, εT can be measured as the residual strain after full
transformation detwinning [68]. Alternatively, both EM and εT can be iden-
tified simultaneously by extrapolating a line from the superelastic unloading
curve as depicted in Figure 20. Furthermore, δ̄ is estimated from the mean
thickness of superelastic hysteresis.

With measurements of EA, EM , εT , and δ̄, the local relations (18), (25), (29),
can be used to calculate the chemical free energy parameters ∆u, ∆η, and ∆c
(recall TR = Teq = ∆u/∆η). In this case, we also require the measurement of
σA or σM at one or more temperatures as depicted in Figure 20. Therefore,
if we make the first order approximation of ∆c = 0, only two stress-strain
hysteresis curves at different temperatures are required to identify the local
model fully for the prediction of superelasticity. Given the behavior illus-
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Fig. 20. Identification of material parameters using stress-strain hysteresis data. The
dashed hysteresis curve corresponds to the higher ambient temperature T2 > T1.

trated in Figure 19, we can estimate zδ and zσ from the loading and unloading
transformation regions.

We note that we have neglected to take into account heat transfer and rate
phenomena described in Section 4.2 and we have implicitly assumed that the
thermal activation effects described in Section 2.4 are insignificant. We take
the identification methods we have described for near-isothermal, quasi-static
cases as a first approximation for these cases. Finally, thermal expansion is
normally negligible in superelasticity due to the small temperature changes.
Nevertheless, the coefficients can be estimated using

λα =
ε1 − ε2
T1 − T2

, (88)

where εi are strains measured at the same stress level for temperatures Ti.

5.2 Thermal Hysteresis

Heat transfer effects are prominent in thermal hysteresis experiments; how-
ever, these effects can be minimized by slow heating rates, high rates of heat
transfer, or direct measurements of the internal SMA temperature. One or
more experimental temperature-strain hysteresis curves are sufficient to es-
timate most of the material parameters pertaining to the SME. The coef-
ficients of thermal expansion can be estimated as the slopes of the extreme
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high-temperature (austenite) and low-temperature (martensite) portions of
the hysteresis curve. As indicated in Figure 21, the elastic moduli can also be
estimated from the extreme portions of the hysteresis curve. In particular, at
a fixed stress σ1

EA = σ1 [ε1 + λA (T1 − T0)]
−1 , (89)

where ε1 is the strain measured at temperature T1, T0 is the initial temperature
of the cooling cycle, and λA is the identified austenite thermal coefficient. In
a similar manner, EM and εT can be measured from the martensite portion
of the hysteresis curve; however, as described in Section 8.2.2, this should be
done at relatively high stresses so that the transformation in the material is
complete. For the same temperature and two fixed stresses, we have

EM =
σ2 − σ1
ε2 − ε1

(90)

and
εT =

σ2ε1 − σ1ε2
σ2 − σ1

. (91)

Similar to the technique in [51], we can estimate the mean local transforma-
tion temperatures T σ

M and T σ
A as the average of the temperatures marking

the beginning and end of transformations (see Figure 21). Finally, using the
moduli, εT , and T σ

M and T σ
A at one or more stresses, we use (32) and (33) to

determine ∆u, ∆η, ∆c, and δ̄. We estimate zδ and zσ from the gradual nature
of the transformation temperature regions.
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5.3 Non-hysteresis Measurements

Other than direct hysteresis measurements, a number of material characteri-
zation methods have been developed for SMAs. We briefly summarize these
methods. First, austenite and martensite elastic moduli are traditionally mea-
sured with non-cyclic, temperature-controlled tensile tests. However, when
tensile tests are not feasible, as is typically the case for SMA thin films and
microdevices, nanoindentation measurements are used [14,29,36,78,81].

In some cases, the chemical free energy parameters can be estimated di-
rectly. In particular, as described in [68], the difference in austenite and
martensite reference entropies ∆η can be determined from differential scan-
ning calorimetry (DSC) measurements, which are more commonly used to
measure zero-stress transformation temperatures. One must take care to prop-
erly calibrate measurements to their chosen reference temperature TR in ac-
cordance with the model [100]. In addition to thermocouple techniques [27],
DSC has also been used to measure phase-dependent specific heat capacities
[26,41,89,91,100,106]. Furthermore, there are radiography techniques for mea-
suring surface emissivity �; however, no results have been published for SMAs.
We note that for aluminum film, � = 0.04 and values for oxidized metals are
closer to 0.5 [47]. Because of process impurities, oxidation of sputter-deposited
thin-film SMA is often encountered during high-temperature annealing. In
our treatment, we assume an emissivity of 0.1. Thermal expansion coeffi-
cients of SMAs have been measured using thermomechanical analyzers [107]
(see Table 1 for published values). Finally, resistivities and their temperature
coefficients are measured with four-point probes in a temperature-controlled
chamber [26,41,106]. Next, we employ the parameter identification techniques
described in this section to validate the model through comparison with ex-
perimental data.

6 Experimental Validation

In this section, we demonstrate the model’s ability to simulate and predict
measured material behavior. We provide three examples including anisother-
mal inner-loop superelasticity for a thin foil and superelasticity and SME for
thin-film SMAs. In each case, we summarize the supplied data and material
characterization results, identify parameters from the data, and compare the
model predictions to hysteresis measurements.

6.1 Inner Loops

In this first example, we consider anisothermal stress-strain behavior of a
NiTiFe foil manufactured by Furukawa Techno Material and tested in [77].
The foil was 500 µm thick with w = 0.7 cm and L = 10 cm and had only
trace amounts of iron with a composition 50.5at.%Ni and 0.4at.%Fe. The
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manufacturer-provided transformation temperatures were As = 234 K, Af =
281 K, Ms = 280 K, Mf = 244 K. The specimen was tested in an open
air tensile machine (293 K ambient) at a relatively fast strain rate of 0.01/s
(equivalent to 12.67 MPa/s). After 100 cycles of training, a multiple inner
loop test was performed yielding the data shown in Figure 22.

The elastic moduli EA = 37.2 GPa and EM = 25.5 GPa, and the transfor-
mation strain εT = 0.0253 provided in [77] were measured from the bounding
loop as discussed in Section 5.1. Additionally, we estimated δ̄ = 70 MPa and
σA (293 K) = 305 MPa to calculate Teq = 260 K. No calorimetric analysis
was available, so we estimated cA = cM = 2.9025 MJm−3K−1 from published
data. Calorimetric results for a similar NiTi foil are reported in [91].

Using the bounding loop, we estimated the distribution parameters zδ =
52 MPa and zσ = 55 MPa. For the activation energy volume, we took V =
6903 nm3 (kB/V = 2 Jm−3K−1) and chose a relaxation time τ = 11.5 ms.
Finally, we used published NiTi values ρ = 6450 kgm−3, λA = 11.0 × 10−6
K−1, and λM = 6.6 × 10−6 K−1, and we estimated hc = 10 Wm−2K−1 and
� = 0.1.

Using a load-controlled simulation, we compared the model with the identified
parameters to the data in Figure 22. The hysteresis is highly sloped, most
probably due to self-heating, corresponding to the fast strain rate. We note
that while the model was fit to the outer bounding loop, it reasonably predicts
the inner loop behavior.
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Fig. 22. The model compared to SMA stress-strain data. The inner loops are
obtained successively off the loading path. Parameters were obtained through a fit
to the bounding loop and the resulting model was used to predict the inner loops.

41



6.2 Superelasticity

We consider here the near-isothermal stress-strain behavior for a thin-film
SMA at different temperatures. A NiTi film of 8 µm thickness was deposited
onto a Si substrate using a dedicated DC magnetron sputtering system built
at the UCLA Active Materials Lab [117]. After a 120 minute post-anneal at
773 K, the start and finish transformation temperatures were measured with
a DSC yielding As = 329 K, Af = 353 K, Ms = 334 K, Mf = 323 K. Tensile
specimens having the dimensions w = 0.1778 cm and L = 1.5 cm (gauge
length) were cut from the film. Using an MTS microtensile apparatus, load-
controlled (0.94 MPa s−1) tensile tests were performed in a thermal chamber.
Two cyclic tests were performed yielding the data plotted in Figure 23.

The martensite modulus EM = 13.7 GPa and transformation strain εT =
0.0352 were measured from an initial tensile test at 298 K, and EA = 22.4 GPa
and δ̄ = 165 MPa were estimated from a subsequent test at 353 K. Further-
more, using σA (353 K) = 220 MPa and −σM (298 K) = 105 MPa, we calcu-
lated Teq = 313 K and specified ∆c = 0.0636 MJm−3K−1. Further calori-
metric analysis was not performed, so we estimated cM = 2.9025 MJm−3K−1

from published data.

Using the superelastic data, we estimated the distribution parameters zδ =
35 MPa and zσ = 10 MPa. For the activation energy volume, we took V =
13807 nm3 (kB/V = 1 Jm−3K−1) and chose a relaxation time τ = 1.1 ms.
Finally, we used published NiTi values for ρ = 6450 kgm−3, we estimated
hc = 20 Wm−2K−1 corresponding with results in [69,87], � = 0.1, and we
neglected thermal expansion (near-isothermal conditions).

The model with the identified parameters is compared to the data in Figure 23.
The SMA exhibits imperfect superelasticity at 353 K with a 0.18% resid-
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Fig. 23. The model compared to thin-film SMA stress-strain data. The superelastic
curve at 353 K is used to fit model parameters and the behavior at 298 K is predicted
by the model.
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ual strain. The model accurately predicts the asymmetric loading-unloading
curves and the residual strain. At 298 K, the observed transformation is from
self-accommodating martensite to detwinned martensite. Using the fit to the
superelastic data, we predicted the response at 298 K. We note that both
data correspond to partial cycles, as full transformations are not observed.

6.3 Shape Memory Effect

The final example we consider is the shape memory effect exhibited by a thin-
film SMA. Details of the fabrication and preparation of the test samples are
provided in [51]. A near-equiatomic NiTi film of 9 µm thickness was deposited
onto a glass substrate using an RF magnetron sputtering system and was post
annealed at 773 K. Samples with dimensions of w = 1mm and L = 5mmwere
tested in a temperature-controlled microtensile tester. The SMA was loaded
at high temperature (austenite) after which cooling and re-heating took place
at 10 K/min under a fixed load. A total of 18 cyclic tests were preformed at
fixed stresses ranging from 20 MPa to 600 MPa. Data from four of the tests
were provided and are shown in Figure 24.

Since no calorimetric experiments were performed, we identified the model
parameters directly from the hysteresis data. We used the 200, 360, and 520
MPa cases since it is likely the specimen did not fully transform at 40 MPa.
We estimated the elastic moduli EA = 41.331 GPa and EM = 20.313 GPa,
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Fig. 24. The model (dashed) compared to thin-film SMA SME data (solid) at fixed
stresses. The model is fit to the 360 MPa data and predicts the other cases.
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and the transformation strain εT = 0.0388 from linear fits. Furthermore, we
measured λA = 1.7 × 10−6 K−1 and λM = −21 × 10−6 K−1 from the 360
MPa data. Identifying T σ

M for each curve and T σ
A for the 360 MPa case, we

calculated δ̄ = 530 MPa, Teq = 344 K and ∆c = 0.9966 MJm−3K−1.

We estimated the distribution parameters zδ = 40 MPa and zσ = 80 MPa. For
the activation energy volume, we took V = 13807 nm3 (kB/V = 1 Jm−3K−1)
and chose a relaxation time τ = 0.8 ms. Finally, we used published NiTi
values ρ = 6450 kgm−3 and cM = 2.9025 MJm−3K−1 and we estimated
hc = 20 Wm−2K−1 and � = 0.1.

The model is compared to the data in Figure 24. The SMA exhibits imper-
fect shape memory at higher loads due to accumulating plastic strains, which
account for 32% of the transformation strain for the 520 MPa test. While the
model does predict a decrease in the effective transformation strain at lower
stresses, it underestimates the strain at 200 MPa and overestimates the strain
at 40 MPa. Since we fit the model at 360 MPa where the accumulated strain is
0.039, it is likely our initial fit did not properly characterize the transformation
strain of the material. Further thermal hysteresis tests should be considered
where plastic deformation is not as significant.

7 Concluding Remarks

We have presented a model quantifying the macroscopic nonlinear behavior of
shape memory alloys. In the first step of the development, we employed the
framework of Müller-Achenbach-Seelecke to develop a local rate-dependent,
thermomechanical model applicable to SMAs with uniform crystal lattices.
Then we accommodated inhomogeneous and polycrystalline materials by av-
eraging the variations of local material parameters and by considering nonuni-
form stress fields. The result is a rate-dependent, fully thermomechanical
model that predicts relative elongation due to time-varying stress and tem-
perature. We demonstrated that the model reasonably predicts the behavior
of SMA films pertinent to actuator design such as superelasticity and the
shape memory effect.

The model admits a low-order formulation making it viable for incorporation
into engineering design applications and for implementation in model-based
controllers. In particular, control analysis has been employed for analogous
piezoceramic and magnetostrictive phase evolution models [80]. Moreover,
the model provides a crucial step towards developing a unified methodology
for modeling hysteresis in general ferroic materials [101].

The Boltzmann relations can yield a stiffODE system in (81) and full coupling
between stress and temperature effects may require additional distributions.
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Furthermore, statistical homogenization precludes the inverse problem of di-
rectly constructing new material compounds based on performance require-
ments.

There are opportunities for future research on the model. First, the devel-
opment of control algorithms employing robust and multi-objective control
frameworks should be considered. Second, following further validation, the
model should be integrated into a finite element analysis infrastructure to
support future design, performance evaluation, and qualification of thin-film
SMA microdevices.
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